Looks
like a miserable day weather-wise, so I decided to refine my workflow
associated with my visible band & IR band digital (EoSM) backs on my 645 Vizelex
RhinoCam system.
The RhinoCam
allows me, via my Mamiya-Sekor 45mm lens, to create seamlessly flat large 645
image or a pano, ie no nodal points to worry about ;-)
In 645
mode, the EoSM is used in portrait mode, as below, and in pano mode it is used
in landscape mode.
I've recently
been exploring using an ML-based work flow, for the exposure, with an extended
DoF technique, through using focus bracketing with the sensor bracketing.
Following
composition setting, I first use ML’s ETTR to help me select a suitable base exposure
for the highlights; and decide if I need to exposure bracket as well.
I then set
focus using the 'Rule of 10', which says that if I use an aperture of F/10 and focus
at 4.5m (45mm/10), I’ll be at the hyperfocal with a CoC of 45 microns, ie the
FL in microns. Whereas a CoC of, say, 30 micron, is a good Full Frame starting
point, 45 microns is the 645 equivalent.
From
there I may adjust things as required. For example, I could add some background
focus insurance and set the focus to, say, 6m, ie rather than the theoretical
4.5m.
Note that,
because we are using a 645 format, I can also push the aperture more than we
would with a 35mm format, ie extending the DoF. Thus I could go up to F/20 with
my visible band EoSM back, but ‘only’ F/18 with my IR EoSM back; before
diffraction started to dominate.
As the Vizelex
RhinoCam system needs to take 8 images (two rows of 4 sensor brackets) with the
EOSM in portrait mode, this gives me the opportunity to adopt two focus
strategies. One for the top row and one for the bottom row.
That is I
can focus bracket as well as sensor bracket in the same image. And, as
mentioned above, if required, I could also exposure bracket at each sensor
bracket, eg using a Zero-Noise bracket at, say, 4Ev for the shadows; that is if
a single exposure wont hack it.
I then focus
at 6m, in this case, and take the top four sensor bracket images (with exposure
brackets if required).
Having
then repositioned the RhinoCam system for the bottom row of sensor brackets, I then
refocus the lens at the H/3 point, ie to extend the near DoF in the foreground
from H/2 to H/4. For example, I refocus the lens to around 2m, ie 6/3, which
will extend the near DoF from the 3m in the top row, ie 6/2, to 1m in the
bottom row, ie (6/3)/2.
After ingesting
into Lightroom, I simply use the LR Merge capability.
As an example
(indoor) test shot, I used my visible band EoSM and ETTRed for the highlights,
at ISO100 and at F/16. Giving a base exposure of 1.3s. I set the ML Auto
bracketing to 2 images and +4Ev to create a single ‘zero-noise’ bracket for the
shadows, ie at shutter of 20s. I focused the top row at 6m and the bottom row
at 2m.
After
ingesting into LR I tried to use the combined HDR-Pano merge in LR, but this
failed with an ‘error’ of not enough matching images. I therefore resulted to
doing a two-pass merge process in LR: HDR the two exposure brackets first, with
auto stacking switched on; then do the pano merge in LR.
Finally,
I tweaked the image for ‘a look’.
The
resultant test image is a 283MB, 9367x8865 TIFF image, that, in the rendition
below, is JPEGed down to 4Mb!
I hope
some have found the above of interest and as usual I welcome any feedback.
wow.. i like see some raw... Its possible
ReplyDelete